منابع مشابه
Atomic-layer soft plasma etching of MoS2
Transition from multi-layer to monolayer and sub-monolayer thickness leads to the many exotic properties and distinctive applications of two-dimensional (2D) MoS2. This transition requires atomic-layer-precision thinning of bulk MoS2 without damaging the remaining layers, which presently remains elusive. Here we report a soft, selective and high-throughput atomic-layer-precision etching of MoS2...
متن کاملAtomic Layer Etching: What Can We Learn from Atomic Layer Deposition?
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version ...
متن کاملPlasma atomic layer etching using conventional plasma equipment
The decrease in feature sizes in microelectronics fabrication will soon require plasma etching processes having atomic layer resolution. The basis of plasma atomic layer etching PALE is forming a layer of passivation that allows the underlying substrate material to be etched with lower activation energy than in the absence of the passivation. The subsequent removal of the passivation with caref...
متن کاملMolecular Dynamics Simulations of Atomic H Etching SiC Surface
In this paper, molecular dynamics simulations were performed to study interactions between atomic H and SiC, silicon carbon surfaces were continuously bombarded by atomic H with different energies. The Tersoff-Brenner potentials were implemented. The simulation results show that with increasing incident energy, the retention rate of H atoms on the surface increases linerly. A large number of H ...
متن کاملA quantum chemical study of ZrO2 atomic layer deposition growth reactions on the SiO2 surface
Zirconium oxide (ZrO2) is one of the leading candidates to replace silicon oxide (SiO2) as the gate dielectric for future generation metal-oxide-semiconductor (MOS) based nanoelectronic devices. Experimental studies have shown that a 1–3 monolayer SiO2 film between the high permittivity metal oxide and the substrate silicon is needed to minimize electrical degradation. This study uses density f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hyomen Kagaku
سال: 1995
ISSN: 0388-5321,1881-4743
DOI: 10.1380/jsssj.16.373